Mapping Defoliation with Lidar

نویسنده

  • S. Solberg
چکیده

The aim of this article is to present a concept of using airborne laser scanning (LIDAR), with one scan only, to map defoliation as a forest health variable. The idea is to apply two independent algorithms on the LIDAR data set, to produce both actual and expected leaf area index (LAI) values for every cell in a grid over the area. LAI is estimated based on laser pulse penetration through the canopy layer, and expected LAI values are derived from stand density based on position and height of single trees as obtained from a single-tree segmentation algorithm. The results are preliminary findings from four ongoing and related studies. In the first study repeated laser scans had close to equal extinction coefficients for LAI estimation although the instruments and flight specifications were different. In the second study, based on the findings in the first we derived normal LAI values from extisting and large scale data sets with LIDAR and field data. The main independent variable was stand density, defined as the ratio between mean tree height and mean distance between the trees. The ratio between LAI and stand density was around 0.5, and this is a preliminary standard for a healthy pine forest. In a third study the woody area fraction of LAI was estimated from 14 total harvested trees, and turned out to be slightly below 50% for a healthy pine tree, which means that a totally defoliated pine forest would have an LAI/stand density ratio around 0.2. In the fourth study, these LAI standard values were confirmed with LIDAR data from a severe insect defoliation event in Norway 2005. In conclusion, the present preliminary results demonstrate a potential for application of airborne laser scanning for monitoring or mapping of defoliation as a forest health variable. * Corresponding author

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Area-Based Mapping of Defoliation of Scots Pine Stands Using Airborne Scanning LiDAR

The mapping of changes in the distribution of insect-caused forest damage remains an important forest monitoring application and challenge. Efficient and accurate methods are required for mapping and monitoring changes in insect defoliation to inform forest management and reporting activities. In this research, we develop and evaluate a LiDAR-driven (Light Detection And Ranging) approach for ma...

متن کامل

Mapping insect defoliation in Scots pine with MODIS time-series data

a r t i c l e i n f o Keywords: Coniferous forest Insect damage mapping Time-series data MODIS NDVI WDRVI Pine sawfly Insect damage is a general problem that disturbs the growth of forests, causing economic losses and affecting carbon sequestration. Coarse-resolution data from satellites are potentially useful for national and regional mapping of forest damage, but the accuracy of these methods...

متن کامل

Using Stationary and Mobile

We present results from a terrestrial laser scanner (TLS) and mobile mapping system (MMS) based investigation on forest defoliation caused by the European pine sawfly (Neodiprion sertifer) in a Scots pine dominated forest. The TLS and MMS results are compared with simultaneous visual estimation of the defoliation intensity as percentage of needle loss in the living crown. The capability of TLS ...

متن کامل

Vision-Enhanced Lidar Odometry and Mapping

Vision-Enhanced Lidar Odometry and Mapping (VELO) is a new algorithm for simultaneous localization and mapping using a set of cameras and a lidar. By tightly coupling sparse visual odometry and lidar scanmatching, VELO is able to achieve reduced dri error compared to using either one or the other method. Moreover, the algorithm is capable of functioningwhen either the lidar or the camera is bli...

متن کامل

A White Paper on LIDAR Mapping

.......................................................................................................................................... 3 WHAT IS LIDAR? ................................................................................................................................. 3 HYDROGRAPHIC LIDAR vs TOPOGRAPHIC LIDAR................................................................ 4 LID...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007